Document Type : Research Paper

Authors

1 PhD Candidate/Tarbiat Modares University

2 Tarbiat Modares University/IT Management Group

3 Head of Sharif Policy Research Institute (SPRI)

10.22034/jtd.2021.249855

Abstract

Green industries and renewable energy have been considered because of various issues such as global warming and the need to meet the growing energy needs of communities, especially in recent years, and researchers believe that the transition to greener economies and industries is primarily centered on the role of technological change and evolution. This technological evolution is usually accomplished by problem-solving activities that integrate different sciences from the same or different fields of technology and take advantage of the cumulative nature of knowledge. Given the necessity and importance of the development of renewable technologies, the purpose of this study is to investigate the diversity of knowledge of technological roots in the development of these technologies and the impact of this diversity on the technological catch-up of countries active in this field. Since solar energy is the largest source of renewable energy production in the world, technologies in this field were selected as the study. This research is an applied type of Technometrics and was performed using the patent citation analysis method. In order to conduct the research, in the first step, patents in the field of solar energy in the period 1980 to 2016 were obtained from the Derwent patent database. In the next step, the backward citations of each patent were extracted. In the third step, the number of different technology classes related to this field was identified, and using the index, the originality of each patent was calculated using the R language and aggregated at the national level. In the fourth step, the trend of originality index for successful countries was achieved. Finally, regression modeling showed that for both China and South Korea, the originality of knowledge and the diversity of technological roots were positively correlated with technological catch-up. In the end, the conclusion and research suggestions were presented.

Keywords

  • شمس، محمدحسین شمس؛ خاوری، فرشاد؛ محمدی، مسعود؛ نوری، جلال؛ "مروری بر فناوری‌های تولید برق از انرژی خورشیدی و مقایسه آماری بزرگ‌ترین نیروگاه‌های خورشیدی جهان"، فصلنامه توسعه تکنولوژی صنعتی، شماره 21، صص 22-1، شهریور 1392.
  • بسته نگار، مهرنوش؛ آخوندی، علیرضا؛ "راهبردهایی ملی برای احداث نیروگاه خورشیدی مگاواتی"، فصلنامه توسعه تکنولوژی صنعتی، شماره 21، صص 59-53، شهریور 1392.
  • Barbieri, N.; Ghisetti, C.; Gilli, M.; Marin, G.; Nicolli, F.; “A survey of the literature on environmental innovation based on main path analysis”, J. Econ. Surv., Vol. 30, No. 3, pp. 596–623, 2016.
  • Pearson, P. J.; Foxon, T. J.; “A low carbon industrial revolution? Insights and challenges from past technological and economic transformations”, Energy Policy, Vol. 50, pp. 117–127, 2012.
  • Smith, K.; “Climate change and radical energy innovation: the policy issues”, 2009. https://www.osti.gov/etdeweb/biblio/968106
  • Schoenmakers, W.; Duysters, G.; “The technological origins of radical inventions”, Policy, Vol. 39, No. 8, pp. 1051–1059, 2010.
  • De P. Britto, J. N.; Ribeiro, L. C.; Araújo, L. T.; da M. e Albuquerque, E.; “Patent citations, knowledge flows, and catching-up: Evidences of different national experiences for the period 1982–2006”, Public Policy, p. scaa041, Dec. 2020, doi: 10.1093/scipol/scaa041.
  • IEA; “International Energy Agency”, IEA, 2021.

https://www.iea.org (accessed Feb. 08, 2021).

  • Gerschenkron, A.; “Economic Backwardness in Historical Perspective (1962)”, Polit. Econ. Read. Mark. Inst., pp. 211–228, 1962.
  • Abramovitz, M.; “Catching up, forging ahead, and falling behind”, J. Econ. Hist., pp. 385–406, 1986.
  • Fagerberg, J.; Godinho, M. M.; Innovation and catching-up, The Oxford Handbook of Innovation, 2004.
  • Bagheri, A.; Jafari, M.; “catch-up Korea Steel Industry POSCO Mining”, Q. J. Ind. Technol. Dev., Vol. 19, No. 45, pp. 17–30, Sep. 2021.
  • Lee, K.; Schumpeterian analysis of economic catch-up: Knowledge, path-creation, and the middle-income trap, Cambridge University Press, 2013.
  • Farhangnejad, M. A.; Elahi, S.; Ghazinoory, S. S.; Majidpour, M.; “Mapping the Patent Creation Affecting Factors Using Meta-Synthesis Method”, Innov. Manag. J., Vol. 8, No. 2, pp. 129–166, Sep. 2019.
  • Binz, C.; Gosens, J.; Yap, X.-S.; Yu, Z.; “Catch-up dynamics in early industry lifecycle stages—a typology and comparative case studies in four clean-tech industries”, Ind. Corp. Change, Vol. 29, No. 5, pp. 1257–1275, 2020, doi: 10.1093/icc/dtaa020.
  • Arthur, W. B.; “The structure of invention”, Res. Policy, Vol. 36, No. 2, pp. 274–287, 2007.
  • Schumpeter, J. A.; The theory of economic development: An inquiry into profits, capital, credit, interest, and the business cycle, Cambridge, Mass., Harvard U. P, 1934.
  • Barbieri, N.; Marzucchi, A.; Rizzo, U.; “Knowledge sources and impacts on subsequent inventions: Do green technologies differ from non-green ones?”, Res. Policy, Vol. 49, No. 2, p. 103901, 2020.
  • De Marchi, V.; “Environmental innovation and R&D cooperation: Empirical evidence from Spanish manufacturing firms”, Policy, Vol. 41, No. 3, pp. 614–623, 2012.
  • Ghisetti, C.; Marzucchi, A.; Montresor, S.; “The open eco-innovation mode. An empirical investigation of eleven European countries”, Res. Policy, Vol. 44, No. 5, pp. 1080–1093, 2015.
  • Cainelli, G.; De Marchi, V.; Grandinetti, R.; “Does the development of environmental innovation require different resources? Evidence from Spanish manufacturing firms”, J. Clean. Prod., Vol. 94, pp. 211–220, 2015.
  • Horbach, J.; Oltra, V.; Belin, J.; “Determinants and specificities of eco-innovations compared to other innovations—an econometric analysis for the French and German industry based on the community innovation survey”, Ind. Innov., Vol. 20, No. 6, pp. 523–543, 2013.
  • Marzucchi, A.; Montresor, S.; “Forms of knowledge and eco-innovation modes: Evidence from Spanish manufacturing firms”, Ecol. Econ., Vol. 131, pp. 208–221, 2017.
  • WIPO; “Patents”, 2021.

https://www.wipo.int/patents/en/ (accessed Dec. 29, 2021).

  • Iran Patent Center; “Patent Defibition”, 2021.

https://patentoffice.ir/glossary/234/تجزیه-و-تحلیل-استنادات-پتنت

  • Kapoor, R.; Karvonen, M.; Ranaei, S.; Kässi, T.; “Patent portfolios of European wind industry: New insights using citation categories”, World Pat. Inf., Vol. 41, pp. 4–10, 2015.
  • Harhoff, D.; Narin, F.; Scherer, F. M.; Vopel, K.; “Citation frequency and the value of patented inventions”, Rev. Econ. Stat., Vol. 81, No. 3, pp. 511–515, 1999.
  • Harhoff, D.; Scherer, F. M.; Vopel, K.; “Citations, family size, opposition and the value of patent rights”, Res. Policy, Vol. 32, No. 8, pp. 1343–1363, 2003.
  • Hall, B. H.; Jaffe, A. B.; Trajtenberg, M.; “The NBER patent citation data file: Lessons, insights and methodological tools”, National Bureau of Economic Research, 2001.
  • Hall, B. H.; Jaffe, A.; Trajtenberg, M.; “Market value and patent citations”, RAND J. Econ., pp. 16–38, 2005.
  • Squicciarini, M.; Dernis, H.; Criscuolo, C.; “Measuring patent quality: Indicators of technological and economic value”, OECD Science, Technology and Industry Working Papers, 2013.
  • Mowery, D. C.; Oxley, J. E.; Silverman, B. S.; “Strategic alliances and interfirm knowledge transfer”, Strateg. Manag. J., Vol. 17, No. S2, pp. 77–91, 1996.
  • Leydesdorff, L.; Meyer, M.; “Triple Helix indicators of knowledge-based innovation systems: Introduction to the special issue”, Res. Policy, Vol. 35, No. 10, pp. 1441–1449, 2006.
  • Trajtenberg, M.; Henderson, R.; Jaffe, A.; “University versus corporate patents: A window on the basicness of invention”, Econ. Innov. New Technol., Vol. 5, No. 1, pp. 19–50, 1997.
  • Aristodemou, L.; Tietze, F.; “Citations as a measure of technological impact: A review of forward citation-based measures”, World Pat. Inf., Vol. 53, pp. 39–44, Jun. 2018, doi: 10.1016/j.wpi.2018.05.001.
  • Jaffe, A. B.; de Rassenfosse, G.; “Patent citation data in social science research: Overview and best practices”, J. Assoc. Inf. Sci. Technol., Vol. 68, No. 6, pp. 1360–1374, Jun. 2017, doi: 10.1002/asi.23731.
  • Derwent Innovation, https://clarivate.com/derwent/solutions/derwent-innovation/, 2021. https://clarivate.com/derwent/solutions/derwent-innovation/ (accessed Mar. 16, 2021).
  • Morandat, F.; Hill, B.; Osvald, L.; Vitek, J.; “Evaluating the Design of the R Language”, ECOOP 2012 – Object-Oriented Programming, Berlin, Heidelberg, 2012, pp. 104–131. doi: 10.1007/978-3-642-31057-7_6.
  • Chen, C.; Hicks, D.; “Tracing knowledge diffusion”, Scientometrics, Vol. 59, No. 2, pp. 199–211, 2004.
  • Corrocher, N.; Malerba, F.; Morrison, A.; “Technological regimes, patent growth, and catching-up in green technologies”, Ind. Corp. Change, p. dtab025, May 2021, doi: 10.1093/icc/dtab025.
  • Park, K.-H.; Lee, K.; “Linking the technological regime to the technological catch-up: analyzing Korea and Taiwan using the US patent data”, Ind. Corp. Change, Vol. 15, No. 4, pp. 715–753, 2006.
  • Ruttan, V. W.; “Usher and Schumpeter on invention, innovation, and technological change”, Q. J. Econ., pp. 596–606, 1959.
  • Rosiello, A.; Maleki, A.; “A dynamic multi-sector analysis of technological catch-up: The impact of technology cycle times, knowledge base complexity and variety”, Res. Policy, Vol. 50, No. 3, p. 104194, 2021.