Document Type : Research Paper


1 Associate Professor,department of industrial engineering ,university of science and culture ,tehran,Iran

2 PHD,Candidate,Department of Industrial Engnieering,University of science and culture,Tehran,Iran


The most basic indicator of economic and social development in many developed and developed countries is the automotive industry of that country . ntil 2009, Iran was one of the top 18 automakers in the world and one of the largest automakers in the Middle East. In this research, the price of domestically produced cars in the market is predicted based on the dynamic system model. The statistical population is intended for collecting analytical data of 512 experts and specialists in this field, which according to Cochran's method, 412 people are considered as a statistical sample. The data obtained in the questionnaire were first extracted using the AHP method to extract the effect coefficients of the variables. Then, based on the dynamic system method, model design and simulation were performed in Wensim software. Given the current situation, if it is stable, the growth of car prices is low for 34 months, but after 34 months, a very significant growth can be due to the high impact of factors affecting car prices relative to reducing factors. Is the price of the car.


  • ابونوری، اسمعیل؛ رضوانی، سیدعلی؛ "برآورد تابع هدانیک قیمت خودرو در ایران"، تحقیقات مدل‌سازی اقتصادی، سال 4، شماره 13، صص 62-43، ۱۳۹۲.
  • سمیع زاده، رضا؛ قدیرزاد، سمیرا؛ "پیش بینی قیمت خودرو به کمک روش شبکه های عصبی مصنوعی و Arima"،کنفرانس بین­المللی یافته­های نوین در حسابداری، مدیریت اقتصاد و بانکداری، تهران، 1397.
  • کازرونی، علیرضا؛ اصغرپور، حسین؛ فرضی، نسرین؛ "انتقال اثر نرخ ارز بر قیمت داخلی بازار خودرو ایران با تأکید بر تأثیر سهم واردات از بازار داخلی"، مجله تحقیقات اقتصادی، سال 51، شماره 1، صص 228-205، 1395.
  • Ceylan, H.; Başkan, Ö.; Ozan, C.; “Modeling and forecasting car ownership based on socio-economic and demographic indicators in Turkey”, Special Issue 2018. Urban Travel Behavior in the Middle East and North Africa, 2018.
  • Illgen, S.; Höck, M.; “Electric vehicles in car sharing networks–Challenges and simulation model analysis”, Transportation Research Part D: Transport and Environment, Vol.63, pp. 377-387, 2018.
  • Karlsson, J.; Melin, H.; Cullinane, K.; “The impact of potential Brexit scenarios on German car exports to the UK: an application of the gravity model”, Journal of Shipping and Trade, Vol. 3, No. 1, pp. 1-22, 2018.
  • Lessmann, S.; Voß, S.; “Car resale price forecasting: The impact of regression method, private information, and heterogeneity on forecast accuracy”, International Journal of Forecasting, Vol. 33, No. 4, p.p.864-877, 2017.
  • Sun, N.; Bai, H.; Geng, Y.; Shi, H.; “Price evaluation model in second-hand car system based on BP neural network theory”, In 2017 18th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD), IEEE, pp. 431-436, 2017.
  • Wang, N.; Guo, J.; Liu, X.; Liang, Y.; “Electric vehicle car-sharing optimization relocation model combining user relocation and staff relocation”, Transportation Letters, Vol. 13, No. 4, p.p. 315-326, 2021.
  • Wisudawati, T.; Utami, I.W.; Lestari, R. D.; Saputro, W.A.; “LCGC Car Demand Forecast Analysis with Two Forecasting Method (case studies of consumer in Indonesia)”, In International Conference Health, Science And Technology (ICOHETECH), pp. 323-327, 2021.
  • Yu, H.; Gui, J.; Zhao, Z.; Xiao, R.; Du, Y.; “Analysis and forecast of taxi transport capacity in railway station: A case of Beijing West Railway Station”, In 2021 11th International Conference on Information Science and Technology (ICIST), IEEE, pp. 689-696, 2021.
  • Zhang, L.; Hu, X.; Chen, Q.; Qiu, R.; “Prediction of Car Ownership Based on Principal Component Analysis and Logistic Regression”, Journal of Chongqing Jiaotong University (Natural Science), Vol. 05, 2017.
  • Zhou, F.; Zheng, Z.; Whitehead, J.; Perrons, R.; Page, L.; Washington, S. “Projected prevalence of car-sharing in four Asian-Pacific countries in 2030: What the experts think”, Transportation Research Part C: Emerging Technologies, Vol. 84, pp. 158-177, 2017.